Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMJ Neurol Open ; 6(1): e000560, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389586

RESUMO

One of the most promising approaches to delay, prevent or reverse disability progression in multiple sclerosis (MS) is to enhance endogenous remyelination and limit axonal degeneration. In clinical trials of remyelinating drugs, there is a need for reliable, sensitive and clinically relevant outcome measures. The visual pathway, which is frequently affected by MS, provides a unique model system to evaluate remyelination of acute and chronic MS lesions in vivo and non-invasively. In this review, we discuss the different measures that have been used and scrutinise visual outcome measure selection in current and future remyelination trials.

2.
Elife ; 92020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32452761

RESUMO

Contact repulsion of growing axons is an essential mechanism for spinal nerve patterning. In birds and mammals the embryonic somites generate a linear series of impenetrable barriers, forcing axon growth cones to traverse one half of each somite as they extend towards their body targets. This study shows that protein disulphide isomerase provides a key component of these barriers, mediating contact repulsion at the cell surface in chick half-somites. Repulsion is reduced both in vivo and in vitro by a range of methods that inhibit enzyme activity. The activity is critical in initiating a nitric oxide/S-nitrosylation-dependent signal transduction pathway that regulates the growth cone cytoskeleton. Rat forebrain grey matter extracts contain a similar activity, and the enzyme is expressed at the surface of cultured human astrocytic cells and rat cortical astrocytes. We suggest this system is co-opted in the brain to counteract and regulate aberrant nerve terminal growth.


Assuntos
Orientação de Axônios/fisiologia , Proteínas de Membrana/metabolismo , Óxido Nítrico/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Transdução de Sinais , Animais , Astrócitos/fisiologia , Linhagem Celular , Embrião de Galinha , Galinhas , Biologia do Desenvolvimento , Técnicas de Silenciamento de Genes , Cones de Crescimento/fisiologia , Humanos , Proteínas de Membrana/genética , Neurociências , Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Ratos , Somitos/embriologia , Somitos/fisiologia , Nervos Espinhais/embriologia , Nervos Espinhais/fisiologia
3.
Physiol Rep ; 6(4)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29479840

RESUMO

The genetics underlying variation in health-related musculoskeletal phenotypes can be investigated in a mouse model. Quantitative trait loci (QTLs) affecting musculoskeletal traits in the LG/J and SM/J strain lineage remain to be refined and corroborated. The aim of this study was to map muscle and bone traits in males (n = 506) of the 50th filial generation of advanced intercross lines (LG/SM AIL) derived from the two strains. Genetic contribution to variation in all musculoskeletal traits was confirmed; the SNP heritability of muscle mass ranged between 0.46 and 0.56; and the SNP heritability of tibia length was 0.40. We used two analytical software, GEMMA and QTLRel, to map the underlying QTLs. GEMMA required substantially less computation and recovered all the QTLs identified by QTLRel. Seven significant QTLs were identified for muscle weight (Chr 1, 7, 11, 12, 13, 15, and 16), and two for tibia length, (Chr 1 and 13). Each QTL explained 4-5% of phenotypic variation. One muscle and both bone loci replicated previous findings; the remaining six were novel. Positional candidates for the replicated QTLs were prioritized based on in silico analyses and gene expression in muscle tissue. In summary, we replicated existing QTLs and identified novel QTLs affecting muscle weight, and replicated bone length QTLs in LG/SM AIL males. Heritability estimates substantially exceed the cumulative effect of the QTLs, hence a richer genetic architecture contributing to muscle and bone variability could be uncovered with a larger sample size.


Assuntos
Hibridização Genética , Músculo Esquelético/fisiologia , Locos de Características Quantitativas , Animais , Feminino , Endogamia , Masculino , Camundongos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Característica Quantitativa Herdável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...